Definitions

(a) Let f be a function f defined on the interval $I=(s, t) . f$ is said to be differentiable at a point $x \in I$ if the limit

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { exists. }
$$

(b) A function f is said to be differentiable on the interval $I=(s, t)$ if f is differentiable at each point in I.

Remark f is differentiable on an interval $I=(s, t)$ if and only if for each $x \in I$ there exists $l=l(x) \in \mathbb{R}$ such that the function

$$
o(h)=f(x+h)-f(x)-l h \quad \text { for all } x+h \text { in } I
$$

satisfies that

$$
\lim _{h \rightarrow 0} \frac{o(h)}{h}=0
$$

Here, the function $o(h)$ is read as "little o of h " and $f^{\prime}(x)=l(x)=l$ if l exists.

Proof

\Longrightarrow Suppose that f is differentiable at some point $x \in I$, i.e.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { exists. }
$$

By setting

$$
l=f^{\prime}(x) \text { and } o(h)=f(x+h)-f(x)-l h \quad \text { for } x+h \in I,
$$

we have

$$
\lim _{h \rightarrow 0} \frac{o(h)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)-l h}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}-f^{\prime}(x)=0 .
$$

Let $x \in I$. Suppose that $l=l(x)$ is a real number such that the function

$$
o(h)=f(x+h)-f(x)-l h \quad \text { for all } x+h \text { in } I
$$

satisfies that

$$
\lim _{h \rightarrow 0} \frac{o(h)}{h}=0 .
$$

Then we have

$$
0=\lim _{h \rightarrow 0} \frac{o(h)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}-l .
$$

Hence,

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=l \text { exists. }
$$

By setting $f^{\prime}(x)=l$, we have shown that f is differentiable at $x \in I$.

Theorem (the Chain Rule) Let f be differentiable for all $x \in I=(s, t)$ and let g be differentiable for all $y \in J=(u, v)$. Suppose that

$$
\text { Range of } f=f(I)=\{f(x) \mid x \in I\} \subseteq J=\text { Domain of } g
$$

Then $g \circ f$ is differentiable for all $x \in I$ with

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

Proof For each $x \in I$, since f is differentiable at x, the function

$$
o(h)=f(x+h)-f(x)-f^{\prime}(x) h \quad \text { defined for sufficiently small } h
$$

satisfies that

$$
\lim _{h \rightarrow 0} \frac{o(h)}{h}=0
$$

Also since $f(I) \subseteq J$, the range of f is a subset of the domain of $g, y=f(x) \in J$ and since g is differentiable at $f(x)$, the function

$$
o(k)=g(f(x)+k)-g(f(x))-g^{\prime}(f(x)) k \quad \text { for sufficiently small } k
$$

satisfies that

$$
\lim _{k \rightarrow 0} \frac{o(k)}{k}=0
$$

By setting $k=f(x+h)-f(x)$ and using that

$$
\lim _{h \rightarrow 0} k=0 \text { by the continuity of } f \text { at } x \text { and } \lim _{h \rightarrow 0} \frac{k}{h}=f^{\prime}(x),
$$

we have

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{g \circ f(x+h)-g \circ f(x)-g^{\prime}(f(x)) f^{\prime}(x) h}{h} \\
= & \lim _{h \rightarrow 0} \frac{g(f(x+h))-g(f(x))-g^{\prime}(f(x)) f^{\prime}(x) h}{h} \\
= & \lim _{h \rightarrow 0} \frac{g(f(x)+f(x+h)-f(x))-g(f(x))-g^{\prime}(f(x))[f(x+h)-f(x)-o(h)]}{h} \\
= & \lim _{h \rightarrow 0} \frac{g(f(x)+k)-g(f(x))-g^{\prime}(f(x))[k-o(h)]}{h} \\
= & \lim _{h \rightarrow 0} \frac{g(f(x)+k)-g(f(x))-g^{\prime}(f(x)) k}{k} \frac{k}{h}+\lim _{h \rightarrow 0} \frac{o(h)}{h} \\
= & 0 .
\end{aligned}
$$

Hence $g \circ f$ is differentiable for all $x \in I$ with

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x) \quad \text { for all } x \in I .
$$

